Loading [MathJax]/jax/output/CommonHTML/jax.js
본문 바로가기

Algorithm/D. Math & Number Theory

47. Probability

확률론(Probability Theory)은 PS에서 자주 나오는 분야는 아니지만 관련 문제를 풀기 위해서는 기본적인 지식이 약간은 필요하다. 먼저 확률 관련 용어들의 정의는 다음과 같다.

  • 실험(Experiment)은 관측 또는 그 절차를 의미하며, 실험의 결과로 나올 수 있는 가장 기본적인 결과를 근원사건(근원사상, Elementary Event)이라고 한다.
  • 어떤 특성을 갖는 근원사건의 모임을 사건(사상, Event)이라고 한다.
  • 어떤 조건 아래에서 특정한 사건 A가 일어날 가능성의 정도를 사건 A가 발생할 확률(Probability)이라고 하고, P(A)로 나타낸다.
  • 사건 A가 발생하지 않는 사건을 사건 A여사건(Complementary Event)이라고 하며 AC로 나타낸다.
  • 두 사건 A,B에 대하여 AB가 모두 일어나는 사건을 AB곱사건(Product Event)이라고 하며 AB로 나타낸다. 또한 A 또는 B가 일어나는 사건을 AB합사건(Sum Event)이라고 하며 AB로 나타낸다. AB=일 때 AB를 서로 배반사건(Exclusive Event)이라고 한다.
  • 사건 A가 발생했을 때 사건 B가 발생할 확률을 조건부 확률(Conditional Probability)이라고 하며 P(B|A)로 나타낸다.

문제를 풀 때 많이 이용되는 개념 중 하나는 사건의 독립(Independent)이다. 두 사건 AB가 독립이라는 것은 한 사건의 발생 여부가 다른 사건이 발생할 확률에 영향을 주지 않는다는 의미이다. 두 사건 A,B가 독립일 때 P(A|B)=P(A)이고 P(B|A)=P(B)이다. 문제를 풀 때 등장하는 여러 개의 사건이 독립일 경우 그것들을 각각 따로 처리하면 문제를 더 간단하게 풀 수 있는 경우가 존재한다.


베이즈 정리(베이즈 법칙, Bayes' Theorem)도 알아 두면 좋은 개념이다. 베이즈 정리의 내용은 기존 사건들의 확률을 알 때 그것을 바탕으로 조건부확률을 구할 수 있다는 것이다. k개의 배반사건 A1,A2,,Ak와 다른 사건 E가 존재하고 각각의 사건이 발생할 확률이 0보다 클 때 P(Ai|E)를 다음과 같이 구할 수 있다.

P(Ai|E)=P(AiE)P(E)=P(Ai)P(E|Ai)kj=1P(Aj)P(E|Aj)

즉 사건 E가 발생할 확률을 각각의 사건 A1,A2,,Ak에 대한 조건부확률로 구한 다음 그중 사건 Ai가 발생했을 때의 확률만을 사건 E가 발생하는 확률로 나눠 주는 것이다. 사건 E에 대한 직접적인 확률을 구하기 어려운 경우 이 방법으로 조건부확률을 구할 수 있다.

 

→ solved.ac tag: probability

→ solved.ac tag: bayes

'Algorithm > D. Math & Number Theory' 카테고리의 다른 글

49. Sieve of Eratosthenes  (0) 2021.05.30
48. Prime Factorization  (0) 2021.05.29
46. Combinatorics  (0) 2021.05.15
45. Modular Operation  (0) 2021.05.12
44. Euclidean Algorithm  (0) 2021.05.11