Rank of Matrix (1) 썸네일형 리스트형 58. Rank of Matrix 행렬의 랭크를 쉽게 이해하기 위해서는 벡터의 독립에 대해서 알 필요가 있다. 두 벡터 $\vec{u}, \vec{v}$가 다음과 같은 조건을 만족할 경우 서로 독립(Independence)이라고 한다.$$a\vec{u}+b\vec{v}=\vec{0} \to a=b=0$$이것을 다르게 해석하면 두 개의 벡터가 독립일 때 그 벡터들을 이용해서 공간 내의 모든 좌표를 나타낼 수 있는 $2$차원 공간이 존재한다는 의미가 된다. 이와 비슷하게 $n$개의 벡터 $\vec{v_1}, \vec{v_2}, \ldots \vec{v_n}$가 다음과 같은 조건을 만족할 경우 서로 독립이라고 한다.$$a_1\vec{v_1}+a_2\vec{v_2}+\ldots+a_n\vec{v_n}=\vec{0} \to a_1=a_2=\ldo.. 이전 1 다음